Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jamal Bennazha, ${ }^{\text {a,b }}$ Ali Boukhari ${ }^{\text {b }}$ and Elizabeth M. Holt ${ }^{\text {c* }}$

${ }^{\text {a }}$ Département de Chimie, Faculté des Sciences et Techniques, Université Hassan-II, Mohammedia, Morocco, ${ }^{\mathbf{b}}$ Laboratoire de Chimie du Solide Appliquée, Laboratoire Associé Francophone, Département de Chimie, Faculté des Sciences, Université Mohammed-V, Avenue Ibn-Batouta, Rabat, Morocco, and ${ }^{\text {c }}$ Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA

Correspondence e-mail:
betsy@biochem.okstate.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Si}-\mathrm{O})=0.006 \AA$
Disorder in main residue
R factor $=0.025$
$w R$ factor $=0.064$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Dieuropium(III) silicodimonophosphatediphosphate

A new europium(III) silicophosphate, whose formula may be considered to be $\mathrm{Eu}_{2} \mathrm{Si}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)$, has been found to consist of phosphosilicate chains with $\mathrm{Si}-\mathrm{O}-\mathrm{P}-\mathrm{O}-\mathrm{P}-\mathrm{O}-$ Si backbones extending in the a direction. The $\mathrm{P}_{2} \mathrm{O}_{7}$ group and the Si atom both lie on crystallographic twofold axes. Tetrahedral silicon is further bound to two monophosphate groups. This is a silicophosphate of previously unseen type.

Comment

The structural literature contains reports of only three silicophosphate materials with +3 charged cations. These contain two distinctly different silicophosphate moieties.
$\mathrm{RuSiP}_{3} \mathrm{O}_{11}$ (Fukuoka et al., 1996) may be seen to exist with $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups sharing each of its six terminal O atoms with a different $\mathrm{P}_{2} \mathrm{O}_{7}$ group. Each $\mathrm{P}_{2} \mathrm{O}_{7}$ group is seen to share a single O atom per PO_{4} tetrahedron with an $\mathrm{Si}_{2} \mathrm{O}_{7}$ group, creating a three-dimensional network of linked tetrahedra which encapsulate Ru^{3+} cations. $\mathrm{MoSiP}_{3} \mathrm{O}_{11}$ (Leclaire \& Raveau, 1987) shows the same motif, with Mo^{3+} encapsulated within the three-dimensional network of silicophosphates.
$\mathrm{Mo}_{3} \mathrm{SiP}_{5} \mathrm{O}_{19}$ (Wang et al., 1988) exists with isolated $\left(\mathrm{PO}_{3} \mathrm{O}\right)_{3} \mathrm{SiOSi}\left(\mathrm{OPO}_{3}\right)_{3}$ and $\left(\mathrm{PO}_{3} \mathrm{O}\right)_{3} \mathrm{POP}\left(\mathrm{OPO}_{3}\right)_{3}$ units stacked in columns parallel to the hexagonal c axis. $\mathrm{V}_{3} \mathrm{SiP}_{5} \mathrm{O}_{19}$ (Leclaire et al., 1986) appears to be isostructural with the molybedenum-containing compound of similar formula. $\mathrm{Mo}_{4} \mathrm{Si}_{2} \mathrm{P}_{6} \mathrm{O}_{25}$ (Leclaire et al., 1988) shows a similar motif but with $\left(\mathrm{PO}_{3} \mathrm{O}\right)_{3} \mathrm{SiOSi}\left(\mathrm{OPO}_{3}\right)_{3}$ groups only.
$\mathrm{Eu}_{2} \mathrm{Si}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)$ crystallizes with silicophosphate chains with $\mathrm{Si}-\mathrm{O}-\mathrm{P}-\mathrm{O}-\mathrm{P}-\mathrm{O}$ backbones extending in the a direction (Fig. 1). Tetrahedral silicon is further bound to two monophosphate groups, whereas the P atoms of the polymeric chain are further bonded to two terminal O atoms, O21 and O23 (Fig. 1). Thus, it is a silicophosphate of a previously unseen type.

Atoms O21, O22 and O23 display a $0.46 / 0.54$ disorder with positions $\mathrm{O}_{2} 1^{\prime}, \mathrm{O} 22^{\prime}$ and $\mathrm{O} 23^{\prime}$, and are related to them by a 23.3° rotation about the $\mathrm{P} 2-\mathrm{O} 24$ bond. Atoms O 22 and $\mathrm{O} 22^{\prime}$ lie on a twofold axis.

Eu atoms are localized between PO_{3} groups and the two terminal O atoms of a P atom of the polymeric chain. Eu is within bonding distance of each of the disordered positions, $\mathrm{O} 21, \mathrm{O} 21^{\prime}, \mathrm{O} 23$ and $\mathrm{O}_{2} 3^{\prime} . \mathrm{Eu}^{3+}$ is six coordinate [average Eu O 2.317 (6) A] , with a seventh $\mathrm{Eu}-\mathrm{O}$ distance of 2.544 (5) A. With the inclusion of the seventh distance, the geometry at europium appears to be that of a pentagonal bipyramid. Using bond-valence calculations to ascertain the validity of the

Received 18 February 2000
Accepted 18 January 2001
Online 30 January 2001

Figure 1
View of dieuropium(III) silicodimonophosphatediphosphate projected on the $a b$ plane. Displacement ellipsoids are shown at the 50% probability level.
seventh distance (Brown, 1981) leads to a valence bond total of 3.065 using the six $\mathrm{Eu}-\mathrm{O}$ distances of less than 2.451 (5) \AA, but a significantly larger total of $3.352 \AA$ if the seventh distance is included. Both geometry and valence-bond calculations argue that this longer distance is meaningful.

Silicon displays tetrahedral geometry, with an average $\mathrm{Si}-$ O distance of 1.604 (6) A. Phosphorus tetrahedra have average $\mathrm{P}-\mathrm{O}$ distances of 1.511 (11) \AA.

Data collection
Syntex $P 4$ four-circle diffractometer $\theta / 2 \theta$ scans
Absorption correction: ψ scan
(XEMP; Siemens, 1990)
$T_{\text {min }}=0.181, T_{\text {max }}=0.357$
1578 measured reflections
1422 independent reflections
1388 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-1 \rightarrow 9$
$k=-1 \rightarrow 23$
$l=-1 \rightarrow 7$
3 standard reflections every 97 reflections intensity decay: none

Experimental

Crystal data

$\mathrm{Eu}_{2} \mathrm{Si}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)$
$M_{r}=695.90$
Orthorhombic, $P 2_{1} 2_{1} 2$
$a=7.056(1) \AA$
$b=16.376$ (3) \AA
$c=5.585$ (1) \AA
$V=645.34(19) \AA^{3}$
$Z=2$
$D_{x}=3.581 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=5.6-16.9^{\circ}$
$\mu=10.30 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colorless
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.07$
1422 reflections
111 parameters

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0334 P)^{2}\right. \\
& +1.2737 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.012 \\
& \Delta \rho_{\text {max }}=0.01 \mathrm{e}^{\circ}{ }^{-3} \\
& \Delta \rho_{\min }=-0.02 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0030 \text { (4) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Eu1-O21 ${ }^{\text {i }}$	2.217 (18)	Si1-O13	1.615 (5)
Eu1-O21 ${ }^{\text {i }}$	2.344 (13)	P1-O11	1.514 (5)
Eu1-O23 ${ }^{\text {ii }}$	2.309 (15)	P1-O12	1.523 (5)
Eu1-O23 ${ }^{\text {'ii }}$	2.240 (12)	P1-O13	1.577 (5)
Eu1-O14 ${ }^{\text {iii }}$	2.267 (5)	P1-O14	1.504 (5)
Eu1-O12 ${ }^{\text {iv }}$	2.349 (4)	$\mathrm{P} 2-\mathrm{O} 21$	1.476 (18)
Eu1-O11 ${ }^{\text {v }}$	2.360 (4)	$\mathrm{P} 2-\mathrm{O} 21^{\prime}$	1.496 (15)
Eu1-O12	2.451 (5)	P2-O22	1.536 (5)
Eu1-O11	2.544 (5)	P2-O22	1.547 (5)
Si1-O24	1.593 (6)	P2-O23	1.520 (14)
$\mathrm{Si} 1-\mathrm{O} 24^{\text {vi }}$	1.593 (6)	$\mathrm{P} 2-\mathrm{O} 23^{\prime}$	1.436 (12)
Si1-O13 ${ }^{\text {vi }}$	1.615 (5)	P2-O24	1.568 (5)
$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{O} 14^{\text {iii }}$	82.2 (5)	$\mathrm{O} 21^{\text {i }}$ - $\mathrm{Eu} 1-\mathrm{O} 11$	149.4 (4)
O23 ${ }^{\text {'ii }}-\mathrm{Eu} 1-\mathrm{O} 14^{\text {iii }}$	169.9 (4)	O12-Eu1-O11	57.32 (14)
$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{O} 23^{\text {ii }}$	87.6 (5)	$\mathrm{O} 24-\mathrm{Si} 1-\mathrm{O} 24^{\text {vi }}$	103.6 (5)
$\mathrm{O} 14^{\mathrm{iii}}-\mathrm{Eu} 1-\mathrm{O} 23^{\text {ii }}$	169.7 (4)	$\mathrm{O} 24-\mathrm{Si} 1-\mathrm{O} 13^{\text {vi }}$	112.5 (3)
$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{O} 12^{\text {iv }}$	78.4 (5)	$\mathrm{O} 24^{\text {vi }}-\mathrm{Si} 1-\mathrm{O} 13{ }^{\text {vi }}$	111.4 (3)
$\mathrm{O} 23^{\prime \text { iii }}-\mathrm{Eu} 1-\mathrm{O} 12{ }^{\text {iv }}$	82.1 (4)	$\mathrm{O} 24-\mathrm{Si1}-\mathrm{O} 13$	111.4 (3)
$\mathrm{O} 14^{\text {iii }}-\mathrm{Eu} 1-\mathrm{O} 12^{\text {iv }}$	88.8 (2)	$\mathrm{O} 24^{\text {vi }}-\mathrm{Si} 1-\mathrm{O} 13$	112.5 (3)
$\mathrm{O} 23^{\text {ii }}-\mathrm{Eu} 1-\mathrm{O} 12{ }^{\text {iv }}$	88.0 (5)	$\mathrm{O} 13{ }^{\text {vi }}-\mathrm{Si} 1-\mathrm{O} 13$	105.6 (4)
$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{O} 11^{\mathrm{v}}$	87.9 (5)	O14-P1-O11	115.4 (3)
$\mathrm{O} 23{ }^{\text {'ii }}-\mathrm{Eu} 1-\mathrm{O} 11^{\text {v }}$	96.4 (4)	O14-P1-O12	114.6 (3)
O14 ${ }^{\text {iii }}-\mathrm{Eu} 1-\mathrm{O} 11^{v}$	93.5 (2)	O11-P1-O12	104.2 (3)
$\mathrm{O} 23{ }^{\text {iii }}-\mathrm{Eu} 1-\mathrm{O} 11^{\mathrm{v}}$	87.4 (5)	O14-P1-O13	107.8 (3)
$\mathrm{O} 12^{\text {iv }}-\mathrm{Eu} 1-\mathrm{O} 11^{\text {v }}$	165.72 (15)	O11-P1-O13	107.5 (3)
$\mathrm{O} 14^{\text {iii }}-\mathrm{Eu} 1-\mathrm{O} 21^{\text {i }}$	95.7 (4)	O12-P1-O13	106.8 (3)
$\mathrm{O} 12^{\mathrm{iv}}-\mathrm{Eu} 1-\mathrm{O} 21^{\text {i }}$	83.9 (4)	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 23$	116.4 (8)
$\mathrm{O} 11^{\mathrm{v}}$ - $\mathrm{Eu} 1-\mathrm{O} 21^{\text {i }}$	81.9 (4)	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 22$	108.9 (10)
$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{O} 12$	156.9 (5)	$\mathrm{O} 23-\mathrm{P} 2-\mathrm{O} 22$	108.8 (11)
$\mathrm{O} 23{ }^{\text {'ii }}-\mathrm{Eu} 1-\mathrm{O} 12$	83.2 (4)	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 24$	110.7 (8)
$\mathrm{O} 14{ }^{\text {iii }}-\mathrm{Eu} 1-\mathrm{O} 12$	98.71 (18)	$\mathrm{O} 23-\mathrm{P} 2-\mathrm{O} 24$	109.6 (8)
$\mathrm{O} 23{ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{O} 12$	91.1 (4)	$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 24$	101.5 (2)
$\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Eu} 1-\mathrm{O} 12$	124.68 (12)	$\mathrm{O} 23^{\prime}-\mathrm{P} 2-\mathrm{O} 22^{\prime}$	109.0 (9)
O11 ${ }^{\text {v }}$ - Eu1-O12	68.94 (15)	$\mathrm{O} 21^{\prime}-\mathrm{P} 2-\mathrm{O} 22^{\prime}$	109.7 (9)
O21 ${ }^{\text {i }}$ - $\mathrm{Eu} 1-\mathrm{O} 12$	148.0 (4)	$\mathrm{O} 23^{\prime}-\mathrm{P} 2-\mathrm{O} 24$	108.4 (6)
$\mathrm{O} 21{ }^{\text {i }}$ - $\mathrm{Eu} 1-\mathrm{O} 11$	145.8 (5)	$\mathrm{O} 23^{\prime}-\mathrm{P} 2-\mathrm{O} 21^{\prime}$	118.1 (7)
$\mathrm{O} 23{ }^{\text {'ii }}-\mathrm{Eu} 1-\mathrm{O} 11$	78.3 (4)	$\mathrm{O} 21^{\prime}-\mathrm{P} 2-\mathrm{O} 24$	108.4 (6)
O14 ${ }^{\text {iii }}-\mathrm{Eu} 1-\mathrm{O} 11$	94.34 (18)	$\mathrm{O} 22^{\prime}-\mathrm{P} 2-\mathrm{O} 24$	102.2 (2)
O23ii-Eu1-O11	93.4 (4)	$\mathrm{P} 2^{\text {vii }}-\mathrm{O} 22-\mathrm{P} 2$	158 (2)
$\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Eu} 1-\mathrm{O} 11$	67.52 (15)	$\mathrm{P} 2-\mathrm{O} 22^{\prime}-\mathrm{P} 2^{\text {vii }}$	154.1 (16)
O11 ${ }^{\text {v }}$ - Eu1-O11	126.26 (12)		

The orthorhombic cell displayed absences $h 00, h=2 n$ and $0 k 0, k=$ $2 n$, fixing the space group as $P 2_{1} 2_{1} 2$. Disorder of three O atoms became apparent as refinement progressed. The $\mathrm{P}_{2} \mathrm{O}_{7}$ group exists with a twofold axis passing through the bridging O atom, which was seen to exist in two positions O22 and O22', both on the twofold axis.

While P2 and O24 were seen in ordered positions, alternate or disordered positions were seen for terminal O atoms O 21 (O21') and $\mathrm{O} 23\left(\mathrm{O} 23^{\prime}\right)$. O21, O22, O23 and O24 form a tetrahedral array about P 2 as do $\mathrm{O}^{\prime} 1^{\prime}, \mathrm{O}_{2} 2^{\prime} \mathrm{O} 23^{\prime}$ and O 24 . The disorder may be understood in terms of an approximately 22° rotation about the $\mathrm{P} 2-\mathrm{O} 24$ (and the $\mathrm{P} 2 a-\mathrm{O} 24 a$ bond related by the twofold axis) corresponding to the bridging O atom being 'up' or 'down' and resulting in a $0.59 \AA$ displacement of each of the disordered atoms. O21 and O23 were refined with an occupancy parameter equal to \times (O 22 occupancy $=$ $0.5 x$) whereas $\mathrm{O} 21^{\prime}$ and $\mathrm{O} 23^{\prime}$ were refined with an occupancy parameter of $1-x$ [O22' occupancy $=(1-x) / 2]$. The refined value of x is 0.46 (3). Anisotropic displacement parameters for pairs of close atoms ($\mathrm{O} 21 / \mathrm{O} 21^{\prime}, \mathrm{O} 22 / \mathrm{O} 22^{\prime}$ and $\mathrm{O} 23 / \mathrm{O} 23^{\prime}$) were constrained to identical values for each pair. The identity of the Si atom was confirmed by observing that the occupancy parameter refined to the correct value (0.5), confirming the electron density of the position, by comparing the $\mathrm{Si}-\mathrm{O}$ distances with those of the literature and by observing the charge neutrality of the structure which requires a +4 cation in that position.

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: SHELXL97.

JB acknowledges the support of the Moroccan-American Commission in the form of a Fullbright grant which has made this research possible.

References

Brown, I. D. (1981). Struct. Bonding Cryst. 2, 1-30.
Fukuoka, H., Imoto, H. \& Sato, T. (1996). J. Solid State Chem. 121, 247-250.
Leclaire, A., Chahboun, H., Groult, D. \& Raveau, B. (1986). J. Solid State Chem. 65, 168-177.
Leclaire, A., Lamire, M. \& Raveau, B. (1988). Acta Cryst. C44, 1181-1184.
Leclaire, A. \& Raveau, B. (1987). J. Solid State Chem. 71, 283-290.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1990). XP. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
Wang, S. L., Wang, C. C. \& Lii, K. H. (1988). J. Solid State Chem. 74, 409-413.

[^0]: (C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

